Ð

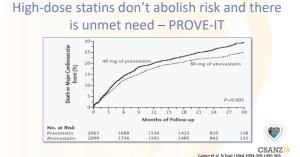
CSANZ19

LDL in the 2020's: How low is too low?

Harvey White John Neutze Scholar Green Lane Cardiovascular Service and Cardiovascular Research Unit Auckland City Hospital

CSANZ19

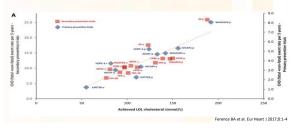
Overview

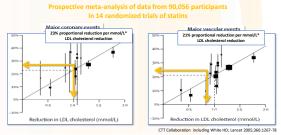

- Unmet need
- Rationale for earlier lipid lowering
- Mendelian randomization and effects of lifelong LDL lowering
- Use of PCSK9 inhibitors
- Appropriate to use more ezetimibe
- What target should we aim for?

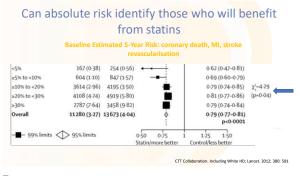
1

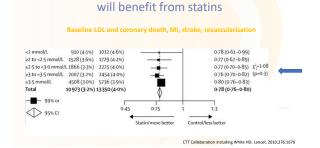
PCSK9 inhibitors and other LDL modifying treatments

- There has been no major advance in the management of elevated LDL since 19th November, 1994 (Ezetimibe 2016)
- Until recently no lipid-modifying therapy has been demonstrated to provide a clinical benefit: fibrates, niacin, CETP inhibitors
- Should we focus solely on evermore aggressive LDL reduction (<1.4mmol/L from IMPROVE- IT with ezetimibe)
- CSANZ19




4


2



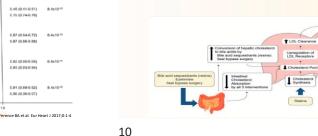
Relation between Proportional Reduction in Incidence of Major Events and Mean Absolute LDL Cholesterol Reduction at 1 Yr

7

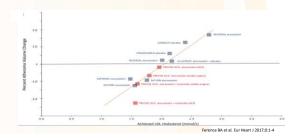
All therapies that lower LDL act by up-regulating LDL


receptors and increase LDL clearance

Lower plasma LDL-C

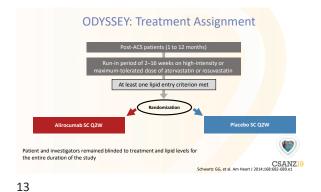

BA et al. Eur Heart J 2017:0:1-4

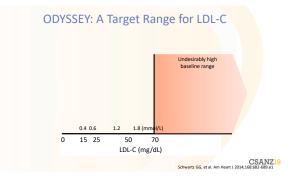
How effective is LDL for identification of those who

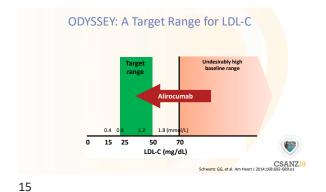

8

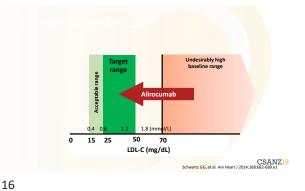
9

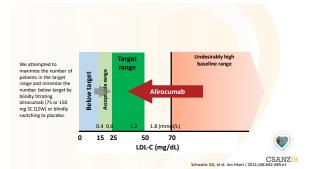
Linear association between achieved low-density lipoprotein cholesterol (LDL-C) level and progression of atherosclerosis

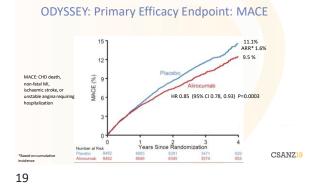


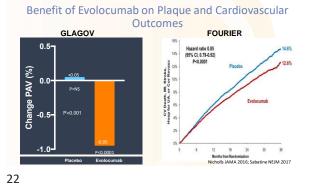

The ODYSSEY OUTCOMES Trial: Topline Results Alirocumab in Patients After Acute Coronary Syndrome

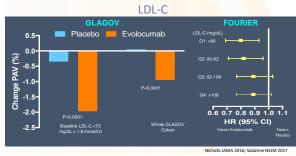



American College of Cardiology – 67th Scientific Sessions March 10, 2018


ClinicalTrials.gov: NCT01663402

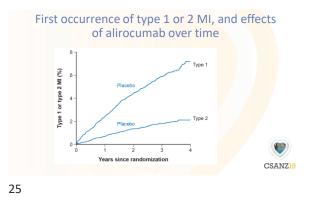


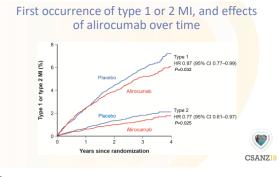



ODYSSEY: Primary Efficacy and Components

Endpoint, n (%)	Alirocumab (N=9462)	Placebo (N=9462)	HR (95% CI)	Log-rank P-value
MACE	903 (9.5)	1052 (11.1)	0.85 (0.78, 0.9 <mark>3</mark>)	0.0003
CHD death	205 (2.2)	222 (2.3)	0.92 (0.76, 1.11)	0.38
Non-fatal MI	626 (6.6)	722 (7.6)	0.86 (0.77, 0.96)	0.006
Ischaemic stroke	111 (1.2)	152 (1.6)	0.73 (0.57, 0.93)	0.01
Unstable angina	37 (0.4)	60 (0.6)	0.61 (0.41, 0.92)	0.02
				CSA

20




Persistent Benefit of Evolocumab at Low Baseline

CSANZ19

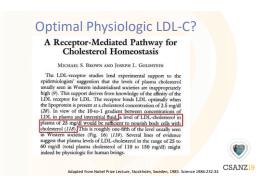
Conclusions

In patients with recent ACS and persistent dyslipidemia despite intensive statin therapy, alirocumab reduced occurrence of both type 1 and type 2 MI:
Type 1 MI: treatment benefit appeared to increase over time
Type 2 MI: first data indicating that a lipid-lowering therapy can attenuate risk

Effect of alirocumab primarily on larger MIs (biomarkers)

Type 4 MI: No effect of alirocumab

>3 x ULN)


28

26

Types of MI and effects of alirocumab

	Alirocumab	Placebo	Treatment HR	р
	Patients, n (%)		(95% CI)	μ
Any MI	639 (6.8)	744 (7.9)	0.85 (0.77-0.95)	0.003
Universal classification				
Type 1	463 (4.9)	528 (5.6)	0.87 (0.77-0.99)	0.032
Type 2	125 (1.3)	162 (1.7)	0.77 (0.61-0.97)	0.02
Type 3	2 (<0.1)	0	-	-
Type 4A	22 (0.2)	28 (0.3)		
Type 4B	50 (0.5)	46 (0.5)	0.94 (0.72-1.22)	0.62
Type 4C	37 (0.4)	42 (0.4)		10000
Type 5	2 (<0.1)	3 (<0.1)	-	-

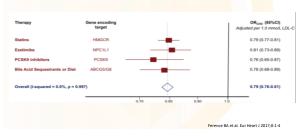
27

What LDL should we aim for after ACS

- LDL is toxic and should be removed from the body if it is above the physiological range (0.8-1.2 mmol/L)
- If LDL levels were reduced to this range at the age of 30 the average life expectancy would be 105 years (CTT meta-analysis shows a 14% reduction in total mortality for each one mmol reduction in LD CSANZI9

- Should it be <1.6 mmol/L based on PROVE-IT</p>
- Should it be <1.4 mmol/L based on IMPROVE-IT</p>
- Should it be <0.8 mmol/L based on FOURIER</p>
- Should it be <0.6 mmol/L based on ideal range</p> target in ODYSSEY
- Should it be <0.6mmol/L based on Brown and</p> Goldstein's physiological range

CSANZ19


32

What LDL should we aim for after ACS

31

Effects of exposure to lower low-density lipoprotein cholesterol (LDL-C) by mechanism of LDL-C lowering

33